نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      المصدر
    • اللغة
10,495 نتائج ل "Flavonoids - analysis"
صنف حسب:
Assessment of Antioxidant and Cytoprotective Potential of Jatropha (Jatropha curcas) Grown in Southern Italy
Jatropha ( L.) is a plant native of Central and South America, but widely distributed in the wild or semi-cultivated areas in Africa, India, and South East Asia. Although studies are available in literature on the polyphenolic content and bioactivity of L., no information is currently available on plants grown in pedoclimatic and soil conditions different from the autochthon regions. The aim of the present work was to characterize the antioxidant system developed by the plant under a new growing condition and to evaluate the polyphenol amount in a methanolic extract of leaves. Along with these analyses we have also tested the antioxidant and cytoprotective activities on lymphocytes. RP-HPLC-DAD analysis of flavonoids revealed a chromatographic profile dominated by the presence of flavone -glucosydes. Vitexin is the most abundant identified compound followed by vicenin-2, stellarin-2, rhoifolin, and traces of isovitexin and isorhoifolin. Methanolic extract had high scavenging activity in all antioxidant assays tested and cytoprotective activity on lymphocytes exposed to tertz-buthylhydroperoxide. The results highlighted a well-defined mechanism of adaptation of the plant and a significant content of secondary metabolites with antioxidant properties, which are of interest for their potential uses, especially as a rich source of biologically active products.
Converting citrus wastes into value-added products: Economic and environmently friendly approaches
Citrus fruits, including oranges, grapefruits, lemons, limes, tangerines, and mandarins, are among the most widely cultivated fruits around the globe. Its production is increasing every year due to rising consumer demand. Citrus-processing industries generate huge amounts of wastes every year, and citrus peel waste alone accounts for almost 50% of the wet fruit mass. Citrus waste is of immense economic value as it contains an abundance of various flavonoids, carotenoids, dietary fiber, sugars, polyphenols, essential oils, and ascorbic acid, as well as considerable amounts of some trace elements. Citrus waste also contains high levels of sugars suitable for fermentation for bioethanol production. However, compounds such as D-limonene must be removed for efficient bioethanol production. The aim of the present article was to review the latest advances in various popular methods of extraction for obtaining value-added products from citrus waste/byproducts and their potential utility as a source of various functional compounds. [Display omitted] •Citrus waste can come from different sources including the processing industry, biorefinery in the form of solid wastes, liquid waste, and distillery effluents.•Citrus waste disposal results in high economic costs.•Various methods are used for the valorization of citrus waste.•Citrus waste is used for the extraction of value-added product.
Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update
There is substantial interest in the role of plant secondary metabolites as protective dietary agents. In particular, the involvement of flavonoids and related compounds has become a major topic in human nutrition research. Evidence from epidemiological and human intervention studies is emerging regarding the protective effects of various (poly)phenol-rich foods against several chronic diseases, including neurodegeneration, cancer and cardiovascular diseases. In recent years, the use of HPLC–MS for the analysis of flavonoids and related compounds in foods and biological samples has significantly enhanced our understanding of (poly)phenol bioavailability. These advancements have also led to improvements in the available food composition and metabolomic databases, and consequently in the development of biomarkers of (poly)phenol intake to use in epidemiological studies. Efforts to create adequate standardised materials and well-matched controls to use in randomised controlled trials have also improved the quality of the available data. In vitro investigations using physiologically achievable concentrations of (poly)phenol metabolites and catabolites with appropriate model test systems have provided new and interesting insights on potential mechanisms of actions. This article will summarise recent findings on the bioavailability and biological activity of (poly)phenols, focusing on the epidemiological and clinical evidence of beneficial effects of flavonoids and related compounds on urinary tract infections, cognitive function and age-related cognitive decline, cancer and cardiovascular disease.
Recent advances and uses of grape flavonoids as nutraceuticals
Grape is one of the oldest fruit crops domesticated by humans. The numerous uses of grape in making wine, beverages, jelly, and other products, has made it one of the most economically important plants worldwide. The complex phytochemistry of the berry is characterized by a wide variety of compounds, most of which have been demonstrated to have therapeutic or health promoting properties. Among them, flavonoids are the most abundant and widely studied, and have enjoyed greater attention among grape researchers in the last century. Recent studies have shown that the beneficial health effects promoted by consumption of grape and grape products are attributed to the unique mix of polyphenolic compounds. As the largest group of grape polyphenols, flavonoids are the main candidates considered to have biological properties, including but not limited to antioxidant, anti-inflammatory, anti-cancer, antimicrobial, antiviral, cardioprotective, neuroprotective, and hepatoprotective activities. Here, we discuss the recent scientific advances supporting the beneficial health qualities of grape and grape-derived products, mechanisms of their biological activity, bioavailability, and their uses as nutraceuticals. The advantages of modern plant cell based biotechnology as an alternative method for production of grape nutraceuticals and improvement of their health qualities are also discussed.
Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan
The aim of this study was to evaluate the antioxidant activity, screening the phytogenic chemical compounds, and to assess the alkaloids present in the E. intermedia to prove its uses in Pakistani folk medicines for the treatment of asthma and bronchitis. Antioxidant activity was analyzed by using 2,2-diphenyl-1-picryl-hydrazyl-hydrate assay. Standard methods were used for the identification of cardiac glycosides, phenolic compounds, flavonoids, anthraquinones, and alkaloids. High performance liquid chromatography (HPLC) was used for quantitative purpose of ephedrine alkaloids in E. intermedia. The quantitative separation was confirmed on Shimadzu 10AVP column (Shampack) of internal diameter (id) 3.0 mm and 50 mm in length. The extract of the solute in flow rate of 1 ml/min at the wavelength 210 nm and methanolic extract showed the antioxidant activity and powerful oxygen free radicals scavenging activities and the IC50 for the E. intermedia plant was near to the reference standard ascorbic acid. The HPLC method was useful for the quantitative purpose of ephedrine (E) and pseudoephedrine (PE) used for 45 samples of one species collected from central habitat in three districts (Ziarat, Shairani, and Kalat) of Balochistan. Results showed that average alkaloid substance in E. intermedia was as follows: PE (0.209%, 0.238%, and 0.22%) and E (0.0538%, 0.0666%, and 0.0514%).
The nutritive value of black soldier fly larvae reared on common organic waste streams in Kenya
In Africa, livestock production currently accounts for about 30% of the gross value of agricultural production. However, production is struggling to keep up with the demands of expanding human populations, the rise in urbanization and the associated shifts in diet habits. High costs of feed prevent the livestock sector from thriving and to meet the rising demand. Insects have been identified as potential alternatives to the conventionally used protein sources in livestock feed due to their rich nutrients content and the fact that they can be reared on organic side streams. Substrates derived from organic by-products are suitable for industrial large-scale production of insect meal. Thus, a holistic comparison of the nutritive value of Black Soldier Fly larvae (BSFL) reared on three different organic substrates, i.e. chicken manure (CM), brewers' spent grain (SG) and kitchen waste (KW), was conducted. BSFL samples reared on every substrate were collected for chemical analysis after the feeding process. Five-hundred (500) neonatal BSFL were placed in 23 × 15 cm metallic trays on the respective substrates for a period of 3-4 weeks at 28 ± 2 °C and 65 ± 5% relative humidity. The larvae were harvested when the prepupal stage was reached using a 5 mm mesh size sieve. A sample of 200 grams prepupae was taken from each replicate and pooled for every substrate and then frozen at -20 °C for chemical analysis. Samples of BSFL and substrates were analyzed for dry matter (DM), crude protein (CP), ether extracts (EE), ash, acid detergent fibre (ADF), neutral detergent fibre (NDF), amino acids (AA), fatty acids (FA), vitamins, flavonoids, minerals and aflatoxins. The data were then subjected to analysis of variance (ANOVA) using general linear model procedure. BSFL differed in terms of nutrient composition depending on the organic substrates they were reared on. CP, EE, minerals, amino acids, ADF and NDF but not vitamins were affected by the different rearing substrates. BSFL fed on different substrates exhibited different accumulation patterns of minerals, with CM resulting in the largest turnover of minerals. Low concentrations of heavy metals (cadmium and lead) were detected in the BSFL, but no traces of aflatoxins were found. In conclusion, it is possible to take advantage of the readily available organic waste streams in Kenya to produce nutrient-rich BSFL-derived feed.
Polyphenol and flavonoid profiles and radical scavenging activity in leafy vegetable Amaranthus gangeticus
Red amaranth (Amaranthus gangeticus L.) has great diversity in Bangladesh, India, and South East Asia with multipurpose uses. The bright red-violet colored A. gangeticus is a popular and low-cost leafy vegetable in the Asian continent including Bangladesh and India because of attractive leaf color, taste, adequate nutraceuticals, phenolic compounds, and sole source of betalains. The natural colors and phenolic compounds of this species have a significant role in promoting the health-benefit including the scavenging capacity of radicals, the colorant of food products, and play a vital role in the industry of foods. However, phenolic profiles and radical scavenging activity of this species have not been evaluated. Hence, for the first time, four selected advance lines of A. gangeticus were characterized for phenolic profiles, antioxidant constituents, and antioxidant potentiality. A. gangeticus genotypes are abundant sources of phenolic profiles and antioxidant constituents with good radical quenching capacity that differed across the genotypes. Twenty-five phenolic acids and flavonoids, such as protocatechuic acid, salicylic acid, gentisic acid, gallic acid, β-resorcylic acid, vanillic acid, p-hydroxybenzoic acid, chlorogenic acid, ellagic acid, syringic acid, ferulic acid, kaempferol, m-coumaric acid, trans-cinnamic acid, quercetin, p-coumaric acid, apigenin, caffeic acid, rutin, sinapic acid, isoquercetin, naringenin, myricetin, catechin, and hyperoside were identified in A. gangeticus accessions. A. gangeticus accessions LS7 and LS9 demonstrated ample phenolic acids, flavonoids, antioxidant constituents, and antioxidant potentiality. It revealed from the correlation study that antioxidant components of A. gangeticus genotypes exhibited good radical scavenging activities. The genotypes LS7 and LS9 could be directly used as phenolic profiles, antioxidant constituents, and antioxidant activity enrich cultivars. The identified compounds of phenolic acids and flavonoids in A. gangeticus privilege the comprehensive study of pharmacology. The basic information on phenolic profiles and antioxidant constituents achieved in the present study will provide the scientist's forum for the scientific assessment of these compounds in A. gangeticus.
Analysis of Flavonoid Metabolites in Citrus Peels ( Citrus reticulata \Dahongpao\) Using UPLC-ESI-MS/MS
Flavonoids are a kind of essential substance for the human body because of their antioxidant properties and extremely high medicinal value. \"Dahongpao\" (DHP) is a special citrus variety that is rich in flavonoids, however little is known about its systematic flavonoids profile. In the present study, the presence of flavonoids in five important citrus varieties, including DHP, (HZY), (YCC), (TC), and 'Buzhihuo' (BZH), was determined using a UPLC-ESI-MS/MS-based, widely targeted metabolome. Results showed that a total of 254 flavonoid metabolites (including 147 flavone, 39 flavonol, 21 flavanone, 24 anthocyanins, 8 isoflavone, and 15 polyphenol) were identified. The total flavonoid content of peels from DHP was the highest. DHP could be clearly separated from other samples through clustering analysis and principal component analysis (PCA). Further, 169 different flavonoid metabolites were observed between DHP peels and the other four citrus peels, and 26 down-regulated differential metabolites displayed important biological activities in DHP. At the same time, a unique flavonoid component, tricin 4'- -syringyl alcohol, was only found in DHP, which could be used as a marker to distinguish between other varieties. This work might facilitate a better understanding of flavonoid metabolites between DHP peels and the other four citrus peels and provide a reference for its sufficient utilization in the future.
Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research
In order to establish firm evidence for the health effects of dietary polyphenol consumption, it is essential to have quantitative information regarding their dietary intake. The usefulness of the current methods, which rely mainly on the assessment of polyphenol intake using food records and food composition tables, is limited as they fail to assess total intake accurately. This review highlights the problems associated with such methods with regard to polyphenol-intake predictions. We suggest that the development of biological biomarkers, measured in both blood and urine, are essential for making accurate estimates of polyphenol intake. However, the relationship between dietary intakes and nutritional biomarkers are often highly complex. This review identifies the criteria that must be considered in the development of such biomarkers. In addition, we provide an assessment of the limited number of potential biomarkers of polyphenol intake currently available.
Antioxidant constituents of three selected red and green color Amaranthus leafy vegetable
Red color (A. tricolor) genotypes are an excellent source of pigments, such as betalain (1122.47 ng g FW), β-xanthin (585.22 ng g FW), β-cyanin (624.75 ng g FW), carotenoids (55.55 mg 100 g FW), and antioxidant phytochemicals, such as vitamin C (122.43 mg 100 g FW), TFC (312.64 RE µg g DW), TPC (220.04 GAE µg g DW), TAC (DPPH and ABTS ) (43.81 and 66.59 TEAC µg g DW) compared to green color (A. lividus) genotype. Remarkable phenolic acids, such as salicylic acid, vanillic acid, protocatechuic acid, gallic acid, gentisic acid, β-resorcylic acid, p-hydroxybenzoic acid, syringic acid, ellagic acid, chlorogenic acid, sinapic acids, trans-cinnamic acid, m-coumaric acid, caffeic acid, p-coumaric acid, ferulic acid, and flavonoids, such as rutin, hyperoside, isoquercetin, myricetin, quercetin, apigenin, kaempferol, and catechin were observed in the red color amaranth genotypes, which was much higher compared to the green color amaranth genotype. We newly identified four flavonoids such as quercetin, catechin, myricetin, and apigenin in amaranth. Among the three selected advanced genotypes studied the red color genotype VA13 and VA3 had abundant antioxidant pigments, phytochemicals, phenolic acids, flavonoids, and antioxidant activity could be selected for extracting colorful juice. Correlation study revealed that all antioxidant constituents of red color amaranth had strong antioxidant activity. The present investigation revealed that two red color genotypes had an excellent source of antioxidants that demand detail pharmacological study.